Deep learning
배치 정규화-신경망 훈련 속도 향상|Neural Network
뉴럴 네트워크(Neural Network) AI의 기본 구성 요소 중 하나로 매우 매우 복잡하게 이루어져 있다. 뉴럴 네트워크를 사용하는 경우의 중요한 문제 중 하나는 CPU는 물론 GPU에서도 네트워크의 트레이닝에 시간이 오래 걸린다는 것이다. 신경 네트워크는 Back Propagation 알고리즘을 사용하여 문제을 진행한다. 역전파(Back Propagation)를 통해 뉴런은 얼마나 많은 오차를 발생했는지를 학습하고 스스로 오차를 수정한다. 즉, "weights"와 "biases"를 수정한다. 이것에 의해, 입력이 주어졌을 때 올바른 출력을 생성하기 위해 문제를 학습한다. Back Propagation 에는 각 레이어의 구배를 계산하여 역방향으로 전파하는 작업이 포함되어 있다. [The BackPr..
[Part 2]CIFAR-10 을 활용한 이미지 생성기
루브릭¶ 제목 내용 1. GAN의 두 모델 구조를 통해 이미지를 성공적으로 생성하였다. 오브젝트 종류를 육안으로 구별할 수 있을 만한 이미지를 생성하였다. 2. 생성 이미지 시각화 및 학습 그래프를 통해 GAN 학습이 바르게 진행되었음을 입증하였다. gif를 통해 생성이미지 품질이 서서히 향상되는 것과, fake accuracy가 추세적으로 0.5를 향해 하향하고 있음을 확인하였다. 3. 추가적인 GAN 모델구조 혹은 학습과정 개선 아이디어를 제안하고 이를 적용하였다. 제출 아이디어를 제출 프로젝트에 반영하고, 그 결과가 아이디어 적용 이전보다 향상되었음을 시각적으로 입증하였다. 결과 정리¶ ▶ Model One generator training history ▶ Model Two generator tr..
[Part 1]CIFAR-10 을 활용한 이미지 생성기
⭐ DCGAN 을 활용한 CIFAR-10 이미지 생성하기 ⭐¶ ▶ 없던 데이터를 만들어 내는 생성 모델링¶✅ 생성 모델링은 지금까지 접해 보았던 기본적인 딥러닝 모델과는 조금 다르다고 하는데, 무엇이 다른 걸까❓❓❓ 만약 직접 가위, 바위, 보에 해당하는 사진을 찍어 데이터셋을 만들고, 각 이미지를 알맞는 카테고리로 분류 할 수 있도록 학습했다고 가정해보자. 이러한 모델은 판별 모델링(Discriminative Modeling) 이라고 부른다. 말 그대로 입력받은 데이터를 어떤 기준에 대해 판별하는 것이 목표인 모델링인 것 이다. 반면, 생성 모델링(Generative Modeling) 은 말 그대로 없던 데이터를 생성 하는 것이 목표이다. 가위, 바위, 보에 대입해 본다면 다양한 가위, 바위, 보가 담..
[Part 2]인공지능으로 새로운 패션을 만들 수 있다!
In [41]: from IPython.core.display import display, HTML display(HTML("")) ⛳ 새로운 패션 만들기 코드로 살펴보자 ⛳¶ 3-2. 코드로 살펴보자.¶사용할 데이터셋이 어떤 것인지 알았으니, 코드를 실행해보자. 필요한 패키지는 신경망 구성에 필요한 Tensorflow, 이미지와 GIF를 다루는 imageio, display, matplotlib, PIL 등 이 필요하다. In [1]: import os import glob import time import PIL import imageio import numpy as np import tensorflow as tf from tensorflow.keras import layers from IPython..
[Part 1]인공지능으로 새로운 패션을 만들 수 있다!
In [41]: from IPython.core.display import display, HTML display(HTML("")) ⛳ 인공지능으로 세상에 없던 새로운 패션 만들기 ⛳¶ ▶ 학습 전제¶ Convolution 의 padding, stride 등의 기본 개념을 알고 있다. 교차 엔트로피(Cross Entropy) 등의 손실 함수, 최적화 함수 등 딥러닝의 기본적인 학습 알고리즘을 알고 있다. Tensorflow 를 활용해 신경망을 학습시키는 코드를 다뤄본 적이 있다. 간단한 판별 모델링(분류, 회귀 등) 의 개념을 알고, 실습해 본 적이 있다. ▶ 학습 목표¶ 생성 모델링 개념을 이해하며 판별 모델링과의 차이 알기 Pix2Pix, CycleGAN 등의 이미지 관련 다양한 생성 모델링의 응용을..