U-Net
[Part4]Sketch2Pokemon-Discriminator구성|Pix2Pix
데이터 준비하기 Generator 구성하기 Generator 재구성하기 Discriminator 구성하기(현재 page) 학습 및 테스트하기 Discriminator 구성하기 Generator만으로 좋은 결과를 도출하기에는 부족할 것입니다. 조금 더 사실적인 이미지를 생성하기 위한 Pix2Pix를 완성시키기 위해서는 Discriminator가 필요한데, 이번 스탭에서는 Discriminator를 만들어 Pix2Pix 구조를 완성시켜 보는 시간을 가져봅시다. Discriminator의 구성요소 알아보기 아래의 사진은 Pix2Pix 논문에서 Discriminator를 구성하는데 필요한 정보이니, 알아보도록 합시다. Generator의 구성 요소와 똑같이 "C64" 등으로 표기되어 있습니다. 진짜인지 가짜 이..
[Part3]Sketch2Pokemon-UNet Generator|Pix2Pix
데이터 준비하기 Generator 구성하기 Generator 재구성하기(현재 page) Discriminator 구성하기 학습 및 테스트하기 Generator 재구성하기 이전 스탭에서 Encoder와 Decoder를 연결시켜 Generator를 만들어 보았습니다. 하지만 앞서 설명드린 것처럼 Pix2Pix의 Generator 구조는 아래 그림처럼 두 가지를 제안하였는데, 아래 그림을 한번 살펴봅시다. 위 그림에서 각 구조 아래에 표시된 이미지는 해당 구조를 Generator로 사용했을 때의 결과입니다. 단순한 Encoder-Decoder 구조에 비해 Encoder와 Decoder 사이를 skip connection으로 연결한 U-Net 구조를 사용한 결과가 훨씬 더 실제 이미지에 가까운 품질을 보이는 것..
[Part2]Sketch2Pokemon-Generator 구성하기|Pix2Pix
데이터 준비하기 Generator 구성하기(현재 page) Generator 재구성하기 Discriminator 구성하기 학습 및 테스트하기 Generator 구성하기 이제부터 본격적으로 Pix2Pix 구조를 구현해보고자 한다. 앞서 cGAN과 같이 Tensorflow의 Subclassing 방법을 이용해 모델을 만들어볼 것이다. Generator의 구성요소 알아보기 먼저, 아래의 사진은 Pix2Pix 논문에서 Generator를 구성하는데 필요한 정보인데, 한번 읽어보도록 하자. Question 논문에서 표기한 encoder의 "C64"는 어떠한 하이퍼 파라미터를 가진 레이어들의 조합을 나타내는 것일까??? 64개의 4 * 4 필터에 stride 2를 적용한 Convolution → 0.2 slope의..
[Part3]난 스케치 넌 채색을... |GAN-Pix2Pix
이전 투고에서는 Generator 구성, Discriminator 구성, 학습 및 테스트를 진행해보았습니다. 이번 시간에는 이미지를 입력으로 하여 원하는 다른 형태의 이미지로 변환시킬 수 있는 GAN model을 알아보도록 합시다. 목차 GAN의 입력에 이미지를 넣는다면? Pix2Pix 1. GAN의 입력에 이미지를 넣는다면? 지금까지 cGAN에 대해 알아보고 실험해 보면서, 작은 조건만으로 우리가 원하는 클래스의 이미지를 생성할 수 있음을 확인해보았다. 만약 입력 자체가 조건이 된다면 어떻게 될까??? cGAN과 같이 클래스 레이블 등의 조건을 함께 입력하는 것이 아니라, 조금 더 자세하게 내가 원하는 이미지를 얻기 위해 이미지를 조건으로 줄 수 없을까???? 이번에는 Pix2Pix는 기존 노이즈 입력..