Momentum

    Keras optimizer 종류|Tensorflow

    Keras optimizer 종류|Tensorflow

    이번 투고에서는 머신러닝 모델에서 옵티마이저의 역할에 대해 알아보고자 합니다. 또한, 이러한 함수의 이면에 있는 기초적인 수학에 대해서 이해하며, 활용사례와 장점, 단점에 대해서 알아봅시다. 옵티마이저란 무엇인가?? 여러분들은 손실 함수(loss function)는 모델에 제공된 데이터에 대한 성능의 좋고 나쁨을 파악하기 위해 사용된다는 것을 알고 있을 겁니다. 손실 함수는 기본적으로 주어진 훈련 표본에 대한 예측 값과 계산된 값 사이의 차이를 합한 것입니다. 더 좋은 성능을 위해 뉴럴 네트워크가 손실을 최소화하도록 훈련하기 위해, 모델과 손실 함수에 관련된 가중치와 매개변수를 조정할 필요가 있습니다. 이때, 옵티마이저가 굉장히 중요한 역할을 하게 됩니다. 예를 들어봅시다. 길 모르는 언덕을 내려오는 사..

    배치 정규화-속도 향상 미세조정|Neural Network

    배치 정규화-속도 향상 미세조정|Neural Network

    이전 투고에서는 Batch Norm(배치 정규화)이 어떻게 동작하는지 설명하고, Tensor flow에서 어떻게 사용될 수 있는지를 알아보았습니다. 이번에는 Batch Normalization에 관한 이 시리즈를 완료하기 위해서 기억해야 할 코드를 통해 알아보도록 합시다. 디폴트 상태로 실행했다면 모델의 정확도가 올라가지 않아 BN이 무용지물이 되었을 것인데요. 중요한 하이퍼 파라미터인 BN의 모멘텀을 설정하지 않았기 때문입니다. Momentum 앞서 설명한 바와 같이, Momentum은 추론을 위한 밀집된 부분의 평균을 계산할 때 이전 이동평균에 주어진 중요성 중요도이다. Momentum이 어떤 건지 모를 경우 Tensorboard에서 조정할 수 있는 것은 Smoothing 뿐이고요. 운동량은 학습 평..

    [Part 2]CIFAR-10 을 활용한 이미지 생성기

    [Part 2]CIFAR-10 을 활용한 이미지 생성기

    루브릭¶ 제목 내용 1. GAN의 두 모델 구조를 통해 이미지를 성공적으로 생성하였다. 오브젝트 종류를 육안으로 구별할 수 있을 만한 이미지를 생성하였다. 2. 생성 이미지 시각화 및 학습 그래프를 통해 GAN 학습이 바르게 진행되었음을 입증하였다. gif를 통해 생성이미지 품질이 서서히 향상되는 것과, fake accuracy가 추세적으로 0.5를 향해 하향하고 있음을 확인하였다. 3. 추가적인 GAN 모델구조 혹은 학습과정 개선 아이디어를 제안하고 이를 적용하였다. 제출 아이디어를 제출 프로젝트에 반영하고, 그 결과가 아이디어 적용 이전보다 향상되었음을 시각적으로 입증하였다. 결과 정리¶ ▶ Model One generator training history ▶ Model Two generator tr..

    [Part 1]CIFAR-10 을 활용한 이미지 생성기

    [Part 1]CIFAR-10 을 활용한 이미지 생성기

    ⭐ DCGAN 을 활용한 CIFAR-10 이미지 생성하기 ⭐¶ ▶ 없던 데이터를 만들어 내는 생성 모델링¶✅ 생성 모델링은 지금까지 접해 보았던 기본적인 딥러닝 모델과는 조금 다르다고 하는데, 무엇이 다른 걸까❓❓❓ 만약 직접 가위, 바위, 보에 해당하는 사진을 찍어 데이터셋을 만들고, 각 이미지를 알맞는 카테고리로 분류 할 수 있도록 학습했다고 가정해보자. 이러한 모델은 판별 모델링(Discriminative Modeling) 이라고 부른다. 말 그대로 입력받은 데이터를 어떤 기준에 대해 판별하는 것이 목표인 모델링인 것 이다. 반면, 생성 모델링(Generative Modeling) 은 말 그대로 없던 데이터를 생성 하는 것이 목표이다. 가위, 바위, 보에 대입해 본다면 다양한 가위, 바위, 보가 담..